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ABSTRACT
To analyze large-scale data efficiently, developers have created var-
ious big data processing frameworks (e.g., Apache Spark). These
big data processing frameworks provide abstractions to developers
so that they can focus on implementing the data analysis logic. In
traditional software systems, developers leverage logging to moni-
tor applications and record intermediate states to assist workload
understanding and issue diagnosis. However, due to the abstraction
and the peculiarity of big data frameworks, there is currently no
effective monitoring approach for big data applications. In this pa-
per, we first manually study 1,000 randomly sampled Spark-related
questions on Stack Overflow to study their root causes and the type
of information, if recorded, that can assist developers with motion-
ing and diagnosis. Then, we design an approach, DPLOG, which
assists developers with monitoring Spark applications. DPLOG
leverages statistical sampling to minimize performance overhead
and provides intermediate information and hint/warning messages
for each data processing step of a chained method pipeline. We eval-
uate DPLOG on six benchmarking programs and find that DPLOG
has a relatively small overhead (i.e., less than 10% increase in re-
sponse time when processing 5GB data) compared to without using
DPLOG, and reduce the overhead by over 500% compared to the
baseline. Our user study with 20 developers shows that DPLOG can
reduce the needed time to debug big data applications by 63% and
the participants give DPLOG an average of 4.85/5 for its usefulness.
The idea of DPLOG may be applied to other big data processing
frameworks, and our study sheds light on future research opportu-
nities in assisting developers with monitoring big data applications.
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1 INTRODUCTION
Due to advances in data science and technologies, the amount of
data that is being created and collected is tremendous. Studies [14,
32] estimate that more than 90% of the data in the world has been
generated in the past few years. The vast amount of data, once
analyzed, provides opportunities for governments and companies
to make data-driven decisions that help improve efficiency and
generate revenues.

To analyze such large-scale data, developers have created var-
ious big data processing frameworks such as Apache Spark [35],
Hadoop [21], and Google’s MapReduce [11]. These big data pro-
cessing frameworks provide abstractions to developers so that they
can focus on implementing the data analysis logic. Using these
frameworks, developers can scale the computation tasks horizon-
tally across clusters of machines with little to no code changes and
speed up computation. In particular, Spark has become one of the
largest and most popular big data processing frameworks due to
its intuitive API design and performance [18].

In traditional software applications, developers may use logging
frameworks such as Log4J to insert logging statements in applica-
tion source code. Then, developers use the generated logs to assist
in monitoring [13, 40], testing [6, 7], and debugging [5, 42, 43].
However, due to the abstraction provided by Spark, there may be
peculiar challenges if developers want to add logging statements
to monitor big data applications. First, developers often leverage
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method chaining (e.g., filter().dropna().distinct()) to cre-
ate a data processing pipeline in Spark. Method chaining is one of
the core concepts in Spark’s API design to promote data immutabil-
ity, which helps reduce concurrency issues related to data sharing.
Method chaining may introduce challenges if developers need to
monitor or understand how the data is transformed in each step, as
developers can only see the final output. Second, Spark implements
lazy evaluation to optimize the data processing pipeline. Breaking
the data processing pipeline to record intermediate information in
each step may significantly affect application performance.

The default logging provided by Spark only records information
related to the Spark internals such as cluster resource allocation.
However, knowing the states of Spark’s internals may be not suf-
ficient for developers, and there is limited support on recording
the execution information on the application side. Due to the im-
portance and complexity of data processing applications, there is a
need for logging solutions to better monitor data transformation
and provide useful system execution information to assist problem
diagnosis. In this paper, we focus our study on Spark due to its
popularity. However, our findings are applicable to other big data
frameworks.

To address the above-mentioned challenges and assist developers
in various tasks related to Spark applications (e.g., monitoring and
issue diagnosis), in this paper, we follow a three-phase sequential
exploratory strategy [2, 9, 22]. Similar to prior research in software
engineering [2, 25, 27], our goal is to first identify the challenges
that developers encounter and propose an approach to assist them.
First, we identify the challenges that developers encounter through
a qualitative study. Specifically, we study the type of information
that may be useful to developers when understanding system exe-
cution and diagnosing issues. We conduct a manual study on 1,000
Spark-related questions from Stack Overflow, which reaches a 95%
confidence level and a 3% confidence interval. We found that ques-
tions related to data processing and Spark API usage are the most
common challenges that developers encounter (63%). In particular,
most issues are related to not knowing what are the intermediate
states of the processed data, and improper usage of API that leads
to unexpected results. Second, we design a logging approach, called
DPLOG, to provide developers the capability to monitor and un-
derstand data processing execution. DPLOG leverages statistical
sampling to minimize performance overhead, and provides inter-
mediate processing information and hint messages in real-time for
each data processing step of a chained method pipeline. Finally, we
evaluate DPLOG by first measuring its performance overhead on
six benchmarking programs. Through a user study, we also show
that the logging information provided by DPLOG may also assist
developers in diagnosing issues in data processing applications.

The contributions of this paper are as follows:
• Our empirical study on Spark-related questions on Stack
Overflow uncovers common challenges that developers en-
counter. Most of the issues that developers have are related
to data transformation and API usage. In particular, devel-
opers often have challenges knowing the intermediate data
states that lead to unexpected results.

• We propose an approach, DPLOG [16], which assists devel-
opers with monitoring and understanding data processing
in Spark.

• Through an evaluation of six benchmarking programs, we
find that DPLOG has a relatively small overhead. Compared
to without using DPLOG, the response time when processing
5GB data increases by less than 10%. DPLOG reduces the
overhead by over 500% compared to the baseline.

• We demonstrate the usefulness of DPLOG through a user
study. Our user study with 10 professional developers and 10
graduate students shows that DPLOG can reduce the needed
time to diagnose issues in big data applications by an average
of 63%. On average, the participants give DPLOG 4.85/5 for
its usefulness.

• We discuss the implications of our findings and future re-
search opportunities in assisting developers with developing
and debugging big data applications.

In summary, we proposed a data-driven solution (i.e., DPLOG)
based on real-world Spark challenges. DPLOG provides support to
Spark developers to address/alleviate such challenges, and our eval-
uation of DPLOG demonstrates its small performance overhead and
its usefulness in helping monitor and diagnose big data applications.
Although DPLOG was implemented for Spark applications, the idea
of DPLOG can be migrated to other big data frameworks, for which
method chains are employed and the intermediate information of
data is difficult to access. For instance, Hadoop also employs method
chains on reducers and mappers for data processing jobs, so our
approach can be migrated to Hadoop to monitor the intermediate
states of data processing.
Paper Organization. Section 2 discusses the background of Spark
and related work. Section 3 presents challenges in developing Spark
applications that we uncover from Stack Overflow questions. Sec-
tion 4 presents the design of DPLOG. Section 5 evaluates DPLOG.
Section 6 discusses implications and future work. Section 7 dis-
cusses threats to validity. Section 8 concludes the paper.

2 BACKGROUND AND RELATEDWORK
Background of Apache Spark. Apache Spark is a distributed
cluster-computing framework that can execute the computation in
parallel in a cluster. To assist developers with big data processing,
Spark abstracts the underlying parallel computation and cluster
management from developers. Spark provides APIs for four pro-
gramming languages: Scala, Java, Python, and R. To process data,
Spark provides three abstractions for distributed data: RDD (re-
silient distributed dataset), DataSet, and DataFrame. RDD is an
immutable distributed collection of data elements that can be oper-
ated in parallel. After Spark 2.0, the Spark official guideline suggests
replacing RDD with Dataset and DataFrame, which provide richer
APIs and better performance optimization. DataSet and DataFrame
both abstract the representations of distributed data, whereas the
difference is that the data in DataSet is strongly-typed. In this paper,
we implement our logging solution for Spark’s Python API (PyS-
park). However, the concepts are applicable to other programming
languages and our prototype solution can be easily extended. Note
that PySpark only supports DataFrame since objects in Python are
weakly-typed. Below, we focus our discussion on DataFrame.

SparkAPIs leverage two important concepts in its design:method
chaining and lazy evaluation. Method chaining is used to en-
sure data immutability (i.e., DataFrame objects are immutable to
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avoid concurrency issues) and allows developers to create a data
processing pipeline by chaining multiple data processing meth-
ods. For example, developers can call dataFrame.filter(x >

3).dropDuplicates().sort() as a chain. By chaining the three
data processing methods (i.e., filter, dropDuplicates, and sort),
each method would return a new DataFrame object that is used
as the input for the next method. The final returned DataFrame
object will have values larger than three being filtered, duplicates
removed and sorted. Method chaining also provides an intuitive
way for developers to combine multiple data processing methods.

To optimize the performance of the chained methods, Spark
employs lazy evaluation for optimization. There are two types
of methods: transformation and action. For example, filter is a
transformation method and count is an action method (i.e., return
the number of rows in the data). All the transformation methods
are lazily evaluated until an action method is called. When an
action method is called, similar to compiler optimization, some
intermediate data processing steps in Spark may be optimized,
combined, or even eliminated to improve performance. If no action
method is called, Spark would not execute any transformation
method. For example, dataFrame.filter(x > 3) will not filter
the data, unless an action method is called, like count. Then, Spark
will start to filter data and calculate the number of rows of the
filtered data.
Existing Logging and Monitoring Supports for Spark.
Logging in Spark: In traditional software applications, developers
add logging statements in source code to record the program state
and application runtime information. These logs provide valuable
information for developers to monitor application status and diag-
nose issues [5, 13, 40, 42, 43]. Spark is no exception and uses Log4J
for logging. All activities that occur inside Spark can get logged
to the shell console and/or the configured underlying storage (e.g.,
to files on the disk or in databases). By default, logging in Spark
only records the information about Spark’s internals and does not
record application execution information (i.e., does not show how
the data is processed or transformed). However, developers may
need to record the intermediate application and data states, in a
case when there is an issue during program execution or with the
final result, developers may be left in the dark. Nevertheless, adding
logging statements to retrieve and record the intermediate infor-
mation of each data processing step can invalidate lazy evaluation,
and cause significant performance overhead (e.g., the data needs to
be collected from all the worker nodes for each step).
Cluster Resource Monitoring: Spark provides a web user interface
(UI) that allows developers to monitor the status and resource
consumption of a Spark cluster. In the web UI, developers can
monitor information such as job status and directed acyclic graphs
that show how Spark schedules and optimizes the data processing
methods. However, the web UI only shows the internal execution
information of the Spark framework. When there is an unexpected
data processing output or error on the application side, the web UI
cannot provide much useful information.

To assist developers with logging and monitoring big data appli-
cations, in this paper, we first conduct an empirical study on the
development challenges that developers encounter. We manually
analyze Spark-related questions on Stack Overflow, with a focus on

understanding the real-world challenges that developers encounter
when running Spark application code, andwhat kind of information,
if recorded, is useful for developers to understand the intermediate
outcome for supporting the effective development of Spark applica-
tions. Based on our findings, we design a logging solution, called
DPLOG, which can better monitor data transformation and provide
useful system execution information to developers, especially sup-
porting the commonly occurred issues that are encountered based
on our empirical study.

Below, we discuss related work on the challenges and supports
in developing big data applications.
Understanding the Challenges of Developing Big Data Appli-
cations. Bagherzadeh et al. [1] applied topic modeling (i.e., LDA)
to study the topics of the questions that developers ask on Stack
Overflow. They find that developers ask questions about MapRe-
duce, debugging, and basic concepts more frequently than some
questions such as performance. Their exploratory study provides a
landscape of big-data questions that developers ask and is a start-
ing point for future research. However, since the study is entirely
quantitative, the study provides limited insights on what types of
information could be helpful for developing and debugging big data
applications. For example, they did not discuss the challenges of us-
ing API functions or the data processing problems that developers
encounter. Kim et al. [24] surveyed 793 Microsoft data scientists
on the common challenges that they encounter. They find that the
most common challenges are related to data quality and the scale
of the data. Fisher et al. [12] also interviewed 16 data analysts at
Microsoft and they found that debugging in a distributed cloud
environment is extremely challenging. Zhou et al. [45] analyzed
210 issue reports from one of Microsoft’s big data platforms. They
find that more than 30% of the issues are related to application de-
sign and code logic. In this paper, we focus our qualitative study on
Stack Overflow questions related to Spark development. Through
our qualitative study, we observe that questions related to data
processing and Spark API usage are the most common challenges
that developers encounter. In particular, most questions are related
to understanding how the data is processed and its intermediate
state in a data processing pipeline. We then design an approach
aiming to assist developers in mitigating such challenges.
Debugging Big Data Applications. Dave et al. [10] proposed
Arthur, which is a debugger for Hadoop and Spark. Arthur en-
ables a user to selectively replay a part of the original computation.
Gulzar et al. [17–20] developed a series of techniques to support de-
bugging and testing for big data applications. Gulzar et al. proposed
BIGDEBUG [18], which is a debugger for Spark applications. After
specifying the breakpoints manually, users can use BIGDEBUG to
debug Spark applications without needing to interrupt or re-run
Spark applications during debugging. In another work, Gulzar et al.
developed another debugging tool called BigSift [17, 20]. Given a
known error caused by the input data, users can specify a predicate
that helps flag the problematic data entries. Then, BigSift applies
delta debugging to find the data entry, for which the correspond-
ing output violates the pre-defined predicate. Different from prior
debugging studies, in this paper, we focus on providing logging sup-
ports to developers. We first conduct an empirical study to identify
the challenges that developers encounter when developing Spark
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applications and identify the types of information that may assist
developers in monitoring Spark applications. Unlike debuggers, log-
ging provides insights on application execution and requires low
performance overhead, since it is often used in production settings.
Debugger, on the other hand, is used to debug a known issue, often
makes the application runs hundreds of times slower, and is used
only in development settings.

3 CHALLENGES IN DEVELOPING SPARK
APPLICATIONS

In this section, we analyze Spark-related questions that were asked
on Stack Overflow.Wewish to understand the real-world challenges
that developers encounter, and what kind of logging supports may
assist developers with monitoring and developing Spark applica-
tions.

Stack Overflow is being widely studied for understanding the
challenges in various areas of software engineering, such as se-
curity, mobile development, and AI-based systems [29, 31, 41, 44].
Similarly, we analyze Spark-related questions on Stack Overflow
to understand the challenges in developing Spark applications. We
download the Stack Overflow data dump that was released in Sep-
tember 2019. The data dump contains detailed information on every
question and answer on Stack Overflow. Stack Overflow requires
every question to have at least one tag to illustrate its topic. We use
the tag apache-spark to select all Spark-related posts (i.e., questions
and the associated answers). We follow prior studies [30, 39] to
select only the questions that have a score that is higher than zero
and has an accepted answer. Moreover, we filter out the questions
that do not have any code snippets, since we wish to study the code
snippets to further understand the possible causes of the challenge
that the asker encountered. We collected 12,217 Spark-related ques-
tions that were asked between 2014 to 2019 (Spark 1.0 was released
in 2014).

We conduct a qualitative study on a statistically significant sam-
ple of questions and their associated answers. More specifically, we
randomly sample 1,000 questions among these 12,217 questions,
achieving a confidence level of 95% and a confidence interval of 3%.
We performed a lightweight open coding-like process that involves
three phases and is performed by two authors (i.e., A1 and A3) in
the paper. We describe the phases to conduct this qualitative study
as follows:

• Phase I: A1 and A3 collaboratively go through 200 questions
and their associated answers to derive an initial list of the
challenges that developers encounter.

• Phase II: A1 and A3 independently go through the rest of
the 1,000 posts, and assign the derived categories to these
posts. In this phase, we did not find any new categories.

• Phase III: A1 and A3 compare their assigned categories and
any disagreement is discussed until a consensus is reached.
The inter-rater agreement has a Cohen’s Kappa of 0.825
before the consensus is reached, which is a high-level agree-
ment [28]. Our manual study result is publicly available [16].

We find that the most common challenge that developers en-
counter is related to Data Processing (43.2%). In general, there are
two categories of issues that developers encounter during data
processing. The first issue type is that the application may return

unexpected data processing results (e.g., a bug in the code), but
developers may have trouble in identifying which data process-
ing method causes the issue. For example, a developer on Stack
Overflow transformed the data by method chaining several data
processing methods [38]. In this question, the developer wishes to
understand and verify the result of each step for testing purposes.
The suggested answer is to break the chained methods and test
them separately. The second issue type is that, due to the vast num-
ber of supported frameworks and APIs in Spark, developers may be
unfamiliar with some API usage or data format. Without knowing
how the data looks like and how it is processed, developers may
encounter unexpected challenges.

The second most common challenge is related to Spark API
Usage (19.1%). Most of the problems in this category are caused by
improper uses of APIs, which leads to unexpected data processing
results without any indication of errors (e.g., no exceptions). Since
Spark integrates the functional programming paradigm in its API
design to abstract big data processing, sometimes developers may
not be familiar with the working mechanism of an API and can use
the API incorrectly. For example, a developer asked a question on
Stack Overflow that the fillna method did not fill the null value
as expected [37]. The developer planned to fill the integer 10 into
all the cells that currently have a null value. However, the data
type of the column is String while the developer planned to fill the
data with integers. In Spark, if the data type of the filled value does
not match with the data type of a column, the replacement would
simply have no effect. There will be no warning messages, so it is
difficult for developers to notice the issue. Some data processing
methods also contain optional parameters that provide different
ways to process data, but developers may not always be aware
of such options. As an example, a developer is confused about
the difference between dropDuplicates and distinct [36]. Both
methods can remove duplicated data, and dropDuplicates has an
additional parameter that is optional, from which the developer
can specify the duplicated columns to be removed. In this case,
providing some hints on anomalous data processing results and
parameter usage may help developers understand how the data is
processed.

We also find that developers often encounter challenges in con-
figuring Spark (15.1%) and its interaction with other data sources
(11.4%). Developers often encounter configuration problems due to
the variety and flexibility of configuration parameters. As Spark
can integrate with a variety of data sources, such as databases,
developers may have problems during this process. We find that
5.5% of the questions are related to performance and logging issues
in Spark deployment. Developers have difficulties in configuring
Spark’s default logging, monitoring Spark execution in the cluster,
or improving the performance of data processing. Finally, there
are some questions that we categorize into Other category (5.4%),
which includes known and unresolved bugs in Spark or questions
that are related to programming language syntax.

In short, we find that questions related to Data Processing and
Spark API Usage are the most common challenges that develop-
ers encounter – accounting for 63% of the studied questions. Our
manual analysis suggests that developers may need to know in-
termediate results after each data processing method is executed
step by step to gain an overview of how their data is processed in
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the pipeline. Providing hints or warning messages on API parame-
ter usage and anomalous data processing results may also provide
additional support to developers. Such execution information can
help developers understand and monitor their applications. An-
other observation is that, in most studied questions, developers are
more interested in knowing examples of how the data is processed.
Therefore, showing samples of data processing results may provide
values for monitoring purposes. Due to the popularity of these
issues, we design a logging approach that may assist developers in
monitoring data processing.

Below, we summarize the Data Processing and Spark API Usage
challenges that we manually uncovered.

• Challenge 1: Data processing in Spark usually involves
a series of steps to transform the raw data into an under-
standable/usable format. However, due to Spark’s method
chaining and lazy-evaluation features, it is usually impossi-
ble for developers to know the intermediate results (or state)
of the processed data during monitoring.

• Challenge 2: Due to the vast number of APIs and their
rich options, developers may pass incorrect API options and
result in unexpected results. Having a warning message on
the used API and related options for each intermediate state
may provide hints to developers on how the data is processed,
especially when API methods are chained together to form
a complex task.

• Challenge 3:Most of the answers in the studied questions
are related to re-running the data processing methods sepa-
rately. However, re-running the application when large input
data can be time consuming. There is a lack of tooling sup-
ports that allow developers to monitor the data processing
details with a reasonable runtime overhead.

To address the above-mentioned challenges, in the next section,
we discuss the design of a logging approach that has a small per-
formance overhead and can be easily adapted to existing Spark
applications.

4 THE DESIGN OF DPLOG
We present the design of our approach, DPLOG, which assists de-
velopers with monitoring and understanding the data processing
execution. DPLOG is a logging approach that provides the inter-
mediate information (e.g., data changes and states, and anomalies
in the data processing) from each of the executed Spark methods.
Table 1 shows the list of data processing methods that are supported
by DPLOG. These methods cover all the basic data processing meth-
ods provided by PySpark’s DataFrame [33]. Based on our empirical
study results, we follow the requirements described below when
designing DPLOG:

• REQ1: DPLOG should provide step-by-step data pro-
cessing execution information to address challenge
1. To assist developers with Spark development and pro-
vide necessary information for monitoring and diagnostic
purposes, DPLOG needs to show how the data is trans-
formed/processed after calling each method.

• REQ2:DPLOG should provide hints to developerswhen
a potential issue occurs during data processing to ad-
dress challenge 2. To assist developers with using data

processing methods in Spark and identify potential issues
with either the results or method usage, DPLOG needs to pro-
vide some hints to developers to help locate or avoid misuses
(i.e., similar to warn level logs in traditional logging [26]).

• REQ3: DPLOG should be scalable and have a low per-
formance overhead to address challenge 3. To assist
developers with getting the intermediate information during
runtime, DPLOG needs to have a relatively low performance
overhead.

Below, we discuss the design of DPLOG that fulfills the three
above-mentioned requirements.

4.1 REQ1: Step-Wise Application Execution
Information

Recording intermediate information: DPLOG records informa-
tion of the data after each data processingmethod is executed during
runtime. Note that there are some technical challenges in obtaining
the intermediate results before a data processing pipeline is finished.
As discussed in Section 2, Spark allows application developers to
create a data processing pipeline by chaining methods and lever-
ages lazy-evaluation to optimize performance (Section 4.4 discusses
the implementation details of DPLOG to address the challenges). In
particular, DPLOG records two types of information: data state and
data processing. For data state, DPLOG records the information of
the data state before and after eachmethod. DPLOG records the data
state differently for each method. For example, for filter, DPLOG
records the number of rows before and after applying filter. For
withColumn (i.e., for creating a new column), DPLOG records the
number of rows and the statistics of the newly added column, such
as max, min, mean, and standard deviation. Recording such data
state information helps gain a high-level overview of the data and
how it changes. For data processing, DPLOG records a small sample
of the data (e.g., 10 rows for display purposes) before and after
applying each data processing method for the showcase. Therefore,
developers can see examples of how the data is transformed and
processed through each step of the data processing pipeline. If there
is a logical bug in the data transformation process, developers may
be able to spot the bug and identify where the bug happens in the
pipeline with the information provided by DPLOG.

4.2 REQ2: Providing Hints on the Executed Data
Processing Methods

To address REQ2 and provide hints to developers about the usage
and potential issue for each data processing method, we design
DPLOG to record the anomalous result for each method call and
provide possible hint messages. DPLOG provides two types of hint
messages: anomalies in the data processing result, and hints on
the used values for the optional parameters in the data processing
methods.

Hints on anomalous data processing results: Bugs that de-
velopers face do not always run into exceptions or failures, but may
also be related to incorrect calculation or data. For example, if a
developer wishes to delete a column in the data but, instead, the de-
veloper gives the name of another column by mistake. In this case,
there will be no exceptions, but the processed data will be incorrect.
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Table 1: The intermediate information and hints of the data processing methods recorded by DPLOG.
REQ1 REQ2

Method Data state Data processing Anomalies hint Parameter hint

filter Filter condition, number of rows (before and
after), percentage of data changed

Display samples of the filtered
data

No data or over 70% are filtered N/A

dropDuplicates Number of rows (before and after), percentage
of data changed

Display samples of the removed
data

No data or over 70% are deleted Use default value for optional
parameter

distinct Number of rows (before and after), percentage
of data changed

Display samples of the removed
data

No data or over 70% are deleted N/A

dropna Number of rows (before and after), number
of nulls (before and after), percentage of data
changed

The distribution of null values No data or over 70% are deleted Use default value for optional
parameter

drop Drop condition, Number of columns (before and
after), percentage of data changed

Display samples of the dropped
data

Number of deleted columns is N/A not expected

fillna Number of nulls (before and after), percentage
of data changed

The distribution of null values There are still null values Use default value for optional
parameter

join Join condition, Number of rows (before and af-
ter), Percentage of data changed

N/A N/A Use default value for optional
parameter

withColumn Data type of the new column, number of
columns (before and after), statistical informa-
tion about the new column (max, min, mean,
std dev)

Display samples of the new data N/A N/A

sort Sort condition, samples of the original data Display samples of the sorted
data

N/A N/A

As shown in Table 1, DPLOG provides hints on anomalous data pro-
cessing results for various methods. For filter, dropDuplicates,
distinct, and dropna, DPLOG provides hints if the resulting data
changes significantly or does not change at all: either no data or
over 70% of the data is removed. The assumption is that developers
often apply the methods to remove some data, but if no data or too
much data is removed, a hint message to warn the developers may
be helpful. Note that developers can adjust the threshold value if
needed. For fillna, we provide a hint message if there still exist
null values in the data after executing fillna. Similarly, for drop,
we provide a hint message if the specified column is not dropped
as expected.

Hints onmethod parameters: As we found in Section 3, devel-
opers sometimes may not be familiar with the parameters used in
data processing methods. To assist developers, DPLOG checks the
values of the parameters given to the data processing method. If the
parameter value is not given and the default value is used, DPLOG
will provide a hint message on the effect of the default parameter
value. For example, if the subset parameter of dropDuplicates
is empty, by default, Spark will apply deduplication to all the
columns, and the behaviour of dropDuplicates becomes the same
as distinct. In this case, DPLOG will provide a hint message on
the effect of not providing the subset parameter. The rationale is
that if the developer has provided a value for the optional parameter,
the developer likely knows the effect of that parameter value. In addi-
tion to dropDuplicates, dropna and fillna also have the subset
parameter. Similarly, DPLOG will provide a hint message if the
value for subset is not provided (i.e., the operation will be applied to
columns). We also provide hints for dropna and join. For example,
there is an optional parameter how, which changes the behaviour of
the method. For dropna, when how is set to “any”, it drops a row if it
contains any nulls; when how is set to “all”, it drops a row if all of its
values are null. Similarly, the how parameter in join specifies how

the data will be joined (e.g., inner join and left outer join). DPLOG
will give a hint message on these optional parameters if developers
did not provide any value. For the remaining methods that have no
optional parameters, the hint messages are not provided.

4.3 REQ3: Minimizing Performance Overhead
To make DPLOG practical, DPLOG must be scalable so that it can
handle large datasets and DPLOG must have a reasonable low-
performance overhead. Spark optimizes data processing pipelines
(i.e., method chaining of multiple calls to data processing methods)
using lazy-evaluation and other optimization techniques (e.g., re-
moving redundant computation). Therefore, if we directly record
the intermediate information from every data processing method,
we would make the optimization techniques invalid and affect the
performance. Fortunately, many of the big data processing issues
that we found during our manual analysis may also happen in
a non-big data setting. Therefore, to minimize the performance
overhead of DPLOG, DPLOG first creates a statistically significant
sample of the data and spawns a new Spark job that applies the data
processing methods step-by-step. Note that DPLOG processes the
original data and the sampled data simultaneously. When applying
the data processing methods on the sampled data, DPLOG records
the intermediate information and provides hint messages. DPLOG
supports random data sampling, and developers can choose the
confidence level and confidence interval. Sampling is an effective
way to provide a statistically significant representation of the data
which is often precise and accurate [4]. By default, DPLOG applies
random sampling with a 99% confidence level and a 3% confidence
interval.

4.4 Implementation of DPLOG
To minimize code changes and configurations when using DPLOG,
we implement DPLOG as an independent package. We implement
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Hint Message

Data state and processing

with DPLOG.enable() as df: 
    df.dropna() 

Original
Data

Sampling
(based on
99+/-3%)

execute
dropna()

Warning: Over 70%
data is deleted!Sampled

Data

No. row before: 1,846      No. row after: 3
No. null before: 1,843      No. Null after: 3 
Deleted 99.9% data
Null value distribution - Nationality: 1,843

Samples of dropped data:
1846, Null
...

Original Data after
processing

ID Nationality

25 USA

73 USA

80 USA

...

1,846 Null

Sampled Data
after processing

ID Nationality

25 USA

73 USA

80 USA

execute dropna() on 
original data

ID Nationality

1 USA

10 USA

58 USA

...

2000 USA

ID Nationality

1 USA

2 Null

3 Null

...

1,000,000 Null

Figure 1: A working example of DPLOG.

DPLOG in Python and support PySpark, Spark’s official Python
APIs. Our implementation is based on Python 3.7.3 and is evaluated
on Spark 2.4.4. DPLOG extends the functionality of PySpark, but
developers do not need to learn the working principle of DPLOG
and hardly need to modify any of the existing code. Developers can
import DPLOG as a package and enable DPLOG by simply adding
“with DPLOG.enable() as df:” (as shown in Figure 1). As shown
in Table 1, DPLOG supports the following APIs in PySpark: filter,
drop, dropDuplicates, distinct, dropna, fillna, withColumn,
sort, and join. DPLOG covers all the basic data processing meth-
ods provided by PySpark’s DataFrame [33]. When users read the
data into a DataFrame object, DPLOG creates a new DataFrame
object that stores the statistically significant sample of the original
data. DPLOG processes the original data and the sampled data si-
multaneously according to the developers’ source code. Note that, if
needed, developers can also run DPLOG on the original data, even
though the overhead will be significant (i.e., similar to the debug
level in traditional logging frameworks).

DPLOG does not modify PySpark’s source code. Instead, it uses
the Adapter design pattern to extend PySpark’s data processing
methods without affecting their original implementations. There-
fore, even if there is a new release of PySpark or the method imple-
mentation is modified, DPLOG can still be applied. The output of
DPLOG (i.e., intermediate information and hint messages) can be
saved to the location that the developer specified, or be recorded
together with Spark’s default logger. In addition to the messages,
DPLOG will also save the sampled data to further assist monitoring
and diagnosis if needed (i.e., developers can load the sampled data
and diagnose potential issues).

Figure 1 shows a working example of DPLOG. First, DPLOG
creates a sampled data based on 99% confidence level and 3% con-
fidence interval. Then, DPLOG processes the sampled data and
provides both the hint message and data state. Developers only
need to add with DPLOG.enable() to enable DPLOG. In this ex-
ample, the dataset contains a larger number of null values in the
column Nationality. When the method dropna is called, DPLOG
provides a hint message that over 70% of the data is deleted, and
shows the statistics and samples of the dropped data. Since DPLOG

is executed concurrently with the original dataset, the final result
on the original data is not affected.

5 EVALUATION OF DPLOG
We evaluate DPLOG along two dimensions: performance overhead,
and whether the recorded information can assist developers in
understanding data processing and diagnosing potential issues.

RQ1: What is the performance overhead of
DPLOG?
Motivation. As mentioned in Section 4, to make DPLOG practical
and scalable, one of the requirements of DPLOG is to minimize
the performance overhead. Therefore, in this RQ, we evaluate the
performance overhead and scalability of DPLOG.
Approach. Our goal is to measure both the performance overhead
and scalability of DPLOG. In particular, we implement six Spark
benchmarking programs for our experiment. Table 2 provides an
overview of the programs. These programs showcase common ap-
proaches of how developers use Spark for data processing [34], and
are similar to the programs used in a prior study [18]. To minimize
possible performance costs related to other non-Spark code, we
design the programs so that they only leverage Spark APIs (which
is also how big data processing applications are typically designed
and implemented [18]). The implementation of our benchmarking
programs is available online [16]. We measure the original response
time (without using DPLOG), the overhead of running DPLOG, and
the overhead of initializing DPLOG (i.e., sampling the data and
creating a new DataFrame). To evaluate the effectiveness of our
samplingmechanism, we alsomeasure the response time of running
DPLOG, while without sampling as a baseline. Namely, the base-
line profiles every data processing step. By default, the unmodified
Spark application would not monitor anything.

Tomeasure the scalability of DPLOG, we run each program using
three different levels of data size (i.e., small, medium, and large):
50MB, 500MB, and 5GB. The data size is increased tenfold for each
level to better illustrate the scalability. Georges et al. [23] found
that performance measurements suffer from instability, which may
even lead to incorrect results. To mitigate the issue, we follow prior
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Table 2: The description of the test programs that are used
for performance benchmarking.

Description Executed Spark Method
P1 Drop null value and Filter data and add a new column filter, dropna

based on condition. withColumn
P2 Drop column and remove duplicate data distinct, drop
P3 Drop column and null value and join two dataframe drop, dropna, join
P4 Fill null value and drop columns and filter data drop, fillna, filter
P5 Remove duplicate data and sort the data. dropDuplicates, sort
P6 Join two dataframes and filter the data join, filter

studies [8, 15, 23] and repeat each performance measurement 20
times. We run each program 80 times (i.e., 20 times for each data
size) and report the mean and standard deviation of the response
time (in seconds). We run our experiments on a server with a 2.6
GHz 6-Core Intel Core i7 CPU, 16GB DDR4 memory, and 500GB
SSD disk.
Results. Table 3 shows the response time without DPLOG and with
DPLOG, the total response time with DPLOG after including the
data sampling step, and the baseline without sampling. Overall, we
find that the overhead of DPLOG is consistent across programs. The
runtime overhead (w/ DPLOG − w/o DPLOG) of DPLOG is around
1 to 3 seconds for the programs executed with three different data
sizes. The overhead remains approximately the same even when
the data size is increased by 100 folds (i.e., from small to large). We
did a t-test to compare DPLOG and the baseline. The results are
all statistically significant (p-values are less than 0.05) with large
effect sizes. Our finding shows that DPLOG has good scalability
since the overhead is consistently small even as the amount of data
increases. The reason may be that the sample sizes do not increase
much especially when the data population is large, so the overhead
of applying the data processing methods is relatively consistent.

We also find that there is a larger overhead related to the initial-
ization process when sampling the data (w/ sampling overhead −
w/ DPLOG). To sample the data, DPLOG needs to first decide which
data records should be sampled by generating a list of random in-
dices. Then, as the data is not indexed, DPLOG needs to scan the
entire data to find the corresponding data records, which results in a
larger sampling overhead. However, DPLOG only needs to perform
sampling once even if there are multiple data processing methods
in the pipeline. Furthermore, we observe that the overhead of the
baseline program is about 2 to 31 times higher than the overhead
of DPLOG, and the overhead grows with the data size. It can be
estimated that if the data size increases, the overhead of the baseline
will increase significantly. In contrast, our sampling mechanism
reduces the overhead by at least 500% when the data size is large,
and the reduction is higher when the data size increases.

Finally, we examine if the performance overhead of running
DPLOG grows linearly as the data size increases. We compute the
response time ratio between running the programs with DPLOG
and without DPLOG. The ratio of the response time of with DPLOG
over response of without DPLOG against different data sizes. We
observe that the ratios of the average overhead for small, medium,
and large data sizes are 137.47%, 64.74%, and 9.25%, respectively.
Namely, the ratio of the overhead decreases as the data size in-
creases. One possible explanation is that, as we explained above,
the sample sizes do not vary much when the data population size is
large (e.g., the sample size eventually converges to 1,849 when the

confidence level is 99% and the confidence interval is 3% no matter
how big the data size is), so the overhead of applying DPLOG is
relatively consistent rather than growing linearly with the data
size.

The overhead of DPLOG is significantly smaller than the base-
line (reduced by an average of over 500%). DPLOG is also
scalable as we find that the relative performance overhead
decreases to less than 10% as the data size increases.

RQ2: How effective is DPLOG in assisting
developers with issue diagnosis?
Motivation. The execution information provided by DPLOG may
be used for various monitoring tasks. We also found in Section 3
that developers may encounter challenges in diagnosing issues in
the data processing pipeline. As found by Beller et al. [3], most
developers rely on logs to examine intermediate application execu-
tion state for issue diagnosis. Thus, in this RQ, we investigate the
effectiveness of DPLOG in assisting developers in diagnosing data
processing-related tasks.
Approach. We design a user study involving 20 participants (10
professional developers and 10 graduate students). These partici-
pants have one to five years of experience in either Spark or big
data analysis. We design six issue diagnosis tasks based on the
Stack Overflow questions that we studied in Section 3. Each task
involves some data processing code and an injected issue. We ab-
stract the irrelevant details from Stack Overflow posts and create a
consistent format for the tasks so that developers can focus more
on diagnosing the task itself. The user study also facilitates bench-
marking the efficiency improvement by using our tool, since in
real Stack Overflow questions, developers may need to spend more
time to read and comprehend the question. To ensure the diversity
of the selected tasks, each task has a different issue either in the
data or in the used data processing methods. The tasks cover all
the data processing methods that DPLOG supports. The tasks are
related to filtering data based on some conditions, removing certain
columns in the data, filtering data, removing duplicates, and filling
or dropping N/A values. The description of the tasks is available
online [16].

Each participant is assigned all six tasks and is required to di-
agnose three tasks with the help of DPLOG and diagnose another
three tasks without using DPLOG. We randomize the order of the
tasks for each participant to reduce the bias from the learning curve.
Note that all the necessary working environments are set up for the
participants, including the required packages and IDE. We provide
detailed instructions on how to use DPLOG to each participant be-
fore starting the user study. During the experiment, each participant
is provided with six source code files, where each file corresponds
to each debugging task. The participants are allowed to run the
program and make any necessary changes to identify the problem.
When the participants believe that they have found the root cause
of the problem in the program, we stop the timer. We record the
time it takes for each participant to finish each task, and ask the
participant to rank the usefulness of DPLOG on a scale from one to
five, where one is considered as strongly disagree (i.e., not useful),
and five is considered strongly agree (i.e., extremely useful).
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Table 3: The response time of the studied programs (measured in seconds). The data size is increased by tenfold for each
size. We show the average response time and standard deviation computed from the 20 repeated runs. w/o DPLOG shows
the response time without DPLOG, w/ DPLOG shows the response with DPLOG (considering only the runtime overhead), w/
sampling overhead shows the total response time including both the runtime and initialization (i.e., sampling) overhead, and
baseline shows the response time of the baseline (without sampling).

Small Data Size Medium Data Size Large Data Size
w/o DPLOG w/ DPLOG w/ sampling baseline w/o DPLOG w/ DPLOG w/ sampling baseline w/o DPLOG w/ DPLOG w/ sampling baseline

overhead overhead overhead
Program1 0.86±0.16 2.45±0.40 3.46±0.53 6.07±0.95 1.83±0.13 3.46±0.39 4.71±0.57 21.82±2.12 13.61±1.24 14.54±1.65 19.97±2.12 214.22±10.64
Program2 2.17±0.31 4.18±0.57 5.32±0.70 7.08±0.99 4.13±0.47 6.39±0.67 7.89±0.85 17.91±1.63 29.14±2.27 31.93±2.70 37.94±3.35 134.18±13.25
Program3 0.98±0.19 2.07±0.30 3.21±0.45 3.85±0.49 2.61±0.29 3.54±0.46 4.91±0.71 16.57±1.62 23.11±2.05 23.79±2.24 29.46±2.90 179.87±13.31
Program4 0.84±0.15 2.81±0.44 3.87±0.60 5.40±0.80 1.84±0.22 3.80±0.60 5.12±0.82 17.05±1.34 12.91±1.32 14.75±1.50 20.41±2.10 140.95±9.44
Program5 3.12±0.41 5.67±0.99 6.73±1.16 9.93±1.51 4.97±0.58 7.07±1.14 8.27±1.30 26.86±2.49 28.27±2.10 30.94±3.34 36.22±3.86 208.38±15.38
Program6 1.01±0.11 2.00±0.31 3.06±0.50 3.75±0.48 1.92±0.17 2.96±0.39 4.30±0.60 11.73±1.02 13.32±1.70 14.56±1.49 20.12±1.75 100.08±6.42

Table 4: The average time for the participants to finish the
given task with and without DPLOG.

Avg. time w/o DPLOG (min) Avg. time w/ DPLOG (min) Improvement
T1 12.26 4.39 64%
T2 10.73 3.29 69%
T3 13.62 5.18 62%
T4 10.72 3.86 64%
T5 8.96 3.43 62%
T6 13.03 5.66 57%
Total 69.28 25.81 63%

Result. On average, DPLOG reduces the needed time for the partici-
pants to diagnose the given tasks by 63%. Table 4 shows the average
time it takes for the user to diagnose the programs. Without using
DPLOG, on average, the participants spent around 9 – 13 minutes
to point out the potential causes of the issue. When using DPLOG,
the average time reduced significantly to 3 – 5 minutes. For every
task, using DPLOG helps reduce the debugging time by 57% to 69%
(an average of 63%). For each task in the user study, we did a t-test
to compare the needed time with and without the help of DPLOG.
The results are statistically significant and all effect sizes are large.
Our findings show that DPLOG is effective in assisting the partici-
pants in monitoring and diagnosing data processing issues in Spark
applications.

Participants all agree that DPLOG is effective in helping with
debugging (i.e., the average rating is 4.85/5). 100% of the participants
either agree or strongly agree that DPLOG is effective in assisting
them with monitoring and diagnosing data processing in Spark. For
example, one participant mentioned “Developers could easily find
which step caused wrong data. This saves a lot of time.” Among the
20 participants, 17 of them strongly agree that DPLOG provides
the needed support, and 3 of them agree that DPLOG provides
assistance in diagnosing issues. Some participants mention that
when the data processing pipeline is longer, any issue that occurs
during the pipeline becomes harder to diagnose, and “DPLOG is
even more useful when there are more data processing methods in the
pipeline”.

Our user study finds that DPLOG can reduce the needed time
to diagnose the given tasks by an average of 63%. The partic-
ipants gave an average rating of 4.85/5 to DPLOG. All of the
participants either agree or strongly agree that DPLOG helps
them with monitoring and diagnosing Spark applications.

6 DISCUSSION
Implications of Our Study. Below, we discuss the insights that
we observed in our analysis on Stack Overflow posts and user
study. Although the observations are related to data processing in
Spark, our research framework of the empirical analysis and the
proposed logging support tool can be easily extended to other big
data applications in future research.

Knowing the intermediate information of data is important
for monitoring and debugging data processing applications. In
our user study, for the tasks where the participants are not allowed
to use DPLOG, we observe that some participants tried to analyze
Spark’s logs and use Spark’s cloud resource monitoring tool to
debug the programs. However, even if the participants knew that
there exist some issues in the program, they could not identify
the root causes using the existing approaches. In most cases, the
participants found that manually printing the data state (e.g., calling
print) is the only useful approach for debugging. Some participants
kept decomposing the chained methods, printing the output of each
individual method, and checking for potential issues. Although
we found that there were fewer manually-added print statements
when the participants use a Python debugger, they still need to
continuously decompose the chained methods to manually debug
the result of each data processing method. More importantly, for
the tasks in which DPLOG is not used, even after the participants
found the issue, they still need to conduct extra analysis to find the
root cause of the issue in the programs.

Different from existing debugging supports, DPLOG provides the
intermediate information of data processing methods, which helps
avoid decomposing the chained methods and reduce debugging
effort. For instance, one participantmentioned that “The information
provided by the tool is very useful and precise. I can find the reason for
the problem much quicker based on the given information.” Another
participant mentioned that “The tool is significantly better than
printing information from the code. The information provided by
the tool is quite rich and helpful for locating the problem.” Another
participant mentioned, “The tool is very easy to use and provides
useful information without manual debugging.” We also observe
that in 86.7% of the tasks in which DPLOG is used, participants
successfully identified the cause of the issue, which is significantly
higher than that of the tasks in which DPLOG is not used (70%).
In other words, providing the intermediate information does help
participants identify an issue and its root cause.
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Providing hints on anomalous data processing results helps
identify issues more quickly. As discussed in Section 4, DPLOG
analyzes the execution of data processing methods and the value
of their optional input parameters. If there is an anomalous result,
DPLOGwould provide a hint message. In our user study, we observe
that such hints are useful for participants to notice the existence of
an issue in the program. For example, one participant mentioned,
“the most promising advantage of the tool is it can alarm users for
anomalous behavior.” Another participant mentioned, “Through
these hints, it is easier for developers to quickly locate the abnormal
behavior of the method or abnormal data.”
Limitations and Future Work. Our study provides an initial
step towards understanding the data processing execution. Even
though our findings show that the overhead of DPLOG is small
and it can assist developers with issue diagnosis, there are still
some limitations and future research opportunities in assisting the
development of big data applications.

Data Visualization and Information Presentation. One com-
mon suggestion from the participants is related to improving the
UI design. Currently, DPLOG records the intermediate information
and hint messages in the form of text (e.g., similar to traditional
logs recorded by Log4J) without providing a rich user interface. A
participant said, “It would be perfect if the tool can finally come as
an interactive form.” Another participant said “it is hard to find the
warning message and useful tips. I would suggest making the warning
and tips easier to identify.” In addition to UI design, we also observed
that visualizing the results of the data processing methods may also
help developers quickly identify issues and understand the data
state. For example, we find that in certain cases, some participants
wanted to visualize the data using histograms to understand how
the data distribution changes. Therefore, future studies may also
consider leveraging data visualization to assist developers with
monitoring big data applications.

Customizable InformationRecording.Currently, DPLOG records
all the data processing information that is described in Table 1. How-
ever, sometimes developers may already have an idea about possible
issues that may occur, and they only want to record certain infor-
mation. For example, in our user study, a participant mentioned
that “There is too much log information and it is not easy to locate the
log I need immediately.” The participant is a professional developer
who has years of experience in developing Spark applications. Even
though the participant found DPLOG to be useful (gave DPLOG
5/5 in terms of usefulness), he suggested a customizable configu-
ration for recording only the needed data processing information.
One approach may be to provide different logging levels, such as
debug, info, warn, and error. Due to the vast amount of data and the
complexity of big data applications, future studies may also inves-
tigate approaches, such as providing a domain-specific language,
that could allow developers to record more customized and focused
information to further assist monitoring and debugging.

More Advanced Debugging Assistance. We uncover common
challenges that developers encounter by analyzing questions on
Stack Overflow. We then design an approach, DPLOG, and evalu-
ate it by conducting a user study. Although our user study shows
promising results, there is still other information that can be added
to assist developers. For example, future studies may investigate

more advanced techniques for providing hint messages for anoma-
lous data processing results using machine learning or artificial
intelligence. Moreover, to reduce the overhead of DPLOG, we apply
random sampling to select a statistically significant subset of data.
Although sampling is an effective technique to reduce the data size
while providing good precision on the original, future studies may
investigate different sampling techniques and how they affect the
effectiveness of debugging big data applications.

7 THREATS TO VALIDITY
External validity. Threats to external validity relate to the gener-
alizability of our findings. In Section 3, we studied the Spark-related
questions on Stack Overflow. The number of questions is large and it
is impossible to study all of the questions qualitatively. To minimize
the bias, we randomly sampled 1,000 statistically representative
questions, giving a confidence level of 95% and a confidence inter-
val of 3%. We implement DPLOG to support only Spark’s Python
version. However, our proposed methodology could be applied to
the other languages and frameworks. Future research is encouraged
to enhance the support for other programming languages. Similarly,
we do not cover all the APIs for data processing. However, in this
study, we cover all the basic data processing APIs for PySpark’s
DataFrame [33] and our user study demonstrates that DPLOG is
effective in helping developers identify issues and their root causes.
Future research is encouraged to apply our approach to other data
processing APIs.
Internal Validity. Threats to internal validity are related to ex-
perimenter errors and bias. We conducted a qualitative study in
Section 3 which was performed by humans and bias may be in-
troduced. To reduce the bias, each question is examined by two
of the authors individually and discrepancies are discussed until
a consensus is reached. We measured the level of the inter-rate
agreement in our qualitative study, and the agreement value is high
(i.e., 0.825).

8 CONCLUSION
Big data technologies have changed how companies and organiza-
tions make decisions. Spark, as one of the most popular big data
processing frameworks on the market, has been widely used in
developing big data applications. In this study, we analyze the
challenges that Spark developers encounter and propose DPLOG
to assist developers in monitoring their big data applications. In
short, this paper makes the following contributions: 1) We conduct
an empirical study of Spark-related questions on Stack Overflow
and identify the major challenges that Spark developers encounter:
unknown intermediate data processing result and no support of
warnings on improper API usages. 2) We propose an approach,
DPLOG, to help developers monitor and diagnose data processing
in Spark and implement it as a Python package. 3) DPLOG has a
small runtime overhead. Through a user study, we find that DPLOG
effectively reduces the average debugging time by 63%, and the
participants highly praised the usefulness of DPLOG. 4) We discuss
the implication of our findings and future research direction that
can further help developers develop and debug Spark applications.
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